Group Elements of Prime Power Index

نویسنده

  • REINHOLD BAER
چکیده

The index [G:g] of the element g in the [finite] group G is the number of elements conjugate to g in G. The significance of elements of prime power index is best recognized once one remembers Wielandt's Theorem that elements whose order and index are powers of the same prime p are contained in a normal subgroup of order a power of p and Burnside's Theorem asserting the absence of elements of prime power index, not 1, in simple groups. From Burnside's Theorem one deduces easily that a group without proper characteristic subgroups contains an element, not 1, whose index is a power of a prime if and only if this group is abelian. In this result it suffices to assume the absence of proper fully invariant subgroups, since we can prove [in §2] the rather surprising result that a [finite] group does not possess proper fully invariant subgroups if and only if it does not possess proper characteristic subgroups. A deeper insight will be gained if we consider groups which contain "many" elements of prime power index. We show [in §5] that the elements of order a power of p form a direct factor if, and only if, their indices are powers of p too; and nilpotency is naturally equivalent to the requirement that this property holds for every prime p. More difficult is the determination of groups with the property that every element of prime power order has also prime power index [§3]. It follows from Burnside's Theorem that such groups are soluble; and it is clear that a group has this property if it is the direct product of groups of relatively prime orders which are either ^-groups or else have orders divisible by only two different primes and furthermore have abelian Sylow subgroups. But we are able to show conversely that every group with the property under consideration may be represented in the fashion indicated. In §5 we study the so-called hypercenter. This characteristic subgroup has been defined in various ways: as the terminal member of the ascending central chain or as the smallest normal subgroup modulo which the center is 1. We may add here such further characterizations as the intersection of all the normalizers of all the Sylow subgroups or as the intersection of all the maximal nilpotent subgroups; and the connection with the index problem is obtained by showing that a normal subgroup is part of the hypercenter if, and only if, its elements of order a power of p have also index a power of p. Notation. All the groups under consideration will be finite. An element [group] is termed primary, if its order is a prime power;

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Elements of Prime Power Index

The index [G:g] of the element g in the [finite] group G is the number of elements conjugate to g in G. The significance of elements of prime power index is best recognized once one remembers Wielandt's Theorem that elements whose order and index are powers of the same prime p are contained in a normal subgroup of order a power of p and Burnside's Theorem asserting the absence of elements of pr...

متن کامل

The Main Eigenvalues of the Undirected Power Graph of a Group

The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...

متن کامل

Fe b 20 07 Prime to p extensions of the generic abelian crossed product

In this paper we prove that the noncyclic generic abelian crossed product p-algebras constructed by Amitsur and Saltman in [AS78] remain noncyclic after tensoring by any prime to p extension of their centers. We also prove that an example due to Saltman of an indecomposable generic abelian crossed product with exponent p and degree p 2 remains indecomposable after any prime to p extension. 0 In...

متن کامل

A Characterization of the Suzuki Groups by Order and the Largest Elements Order

One of the important problems in group theory is characterization of a group by a given property, that is, to prove there exist only one group with a given property. Let  be a finite group. We denote by  the largest order of elements of . In this paper, we prove that some Suzuki groups are characterizable by order and the largest order of elements. In fact, we prove that if  is a group with  an...

متن کامل

Prime power indices in factorised groups

Let the group G = AB be the product of the subgroups A and B. We determine some structural properties of G when the p-elements in A ∪ B have prime power indices in G, for some prime p. More generally, we also consider the case that all prime power order elements in A ∪B have prime power indices in G. In particular, when G = A = B we obtain as a consequence some known results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010